Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.122
Filter
1.
PeerJ ; 12: e17161, 2024.
Article in English | MEDLINE | ID: mdl-38560466

ABSTRACT

The life history of a parasite describes its partitioning of assimilated resources into growth, reproduction, and transmission effort, and its precise timing of developmental events. The life cycle, in contrast, charts the sequence of morphological stages from feeding to the transmission forms. Phenotypic plasticity in life history traits can reveal how parasites confront variable environments within hosts. Within the protist phylum Apicomplexa major clades include the malaria parasites, coccidians, and most diverse, the gregarines (with likely millions of species). Studies on life history variation of gregarines are rare. Therefore, life history traits were examined for the gregarine Monocystis perplexa in its host, the invasive earthworm Amynthas agrestis at three sites in northern Vermont, United States of America. An important value of this system is the short life-span of the hosts, with only seven months from hatching to mass mortality; we were thus able to examine life history variation during the entire life cycle of both host and parasite. Earthworms were collected (N = 968 over 33 sample periods during one host season), then parasites of all life stages were counted, and sexual and transmission stages measured, for each earthworm. All traits varied substantially among individual earthworm hosts and across the sites. Across sites, timing of first appearance of infected earthworms, date when transmission stage (oocysts packed within gametocysts) appeared, date when number of both feeding (trophic) cells and gametocysts were at maximum, and date when 100% of earthworms were infected differed from 2-8 weeks, surprising variation for a short season available for parasite development. The maximal size of mating cells varied among hosts and across sites and this is reflected in the number of oocysts produced by the gametocyst. A negative trade-off was observed for the number of oocysts and their size. Several patterns were striking: (1) Prevalence reached 100% at all sites by mid season, only one to three weeks after parasites first appeared in the earthworms. (2) The number of parasites per host was large, reaching 300 × 103 cells in some hosts, and such high numbers were present even when parasites first appeared in the host. (3) At one site, few infected earthworms produced any oocysts. (4) The transmission rate to reach such high density of parasites in hosts needed to be very high for a microbe, from >0.33% to >34.3% across the three sites. Monocystis was one of the first protist parasites to have its life cycle described (early 19th century), but these results suggest the long-accepted life cycle of Monocystis could be incomplete, such that the parasites may be transmitted vertically (within the earthworm's eggs) as well as horizontally (leading to 100% prevalence) and merogony (asexual replication) could be present, not recognized for Monocystis, leading to high parasitemia even very early in the host's season.


Subject(s)
Apicomplexa , Life History Traits , Oligochaeta , Parasites , Animals , Oligochaeta/parasitology , Reproduction , Life Cycle Stages , Oocysts
2.
Curr Biol ; 34(8): 1810-1816.e4, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38608678

ABSTRACT

Coral reefs are a biodiversity hotspot,1,2 and the association between coral and intracellular dinoflagellates is a model for endosymbiosis.3,4 Recently, corals and related anthozoans have also been found to harbor another kind of endosymbiont, apicomplexans called corallicolids.5 Apicomplexans are a diverse lineage of obligate intracellular parasites6 that include human pathogens such as the malaria parasite, Plasmodium.7 Global environmental sequencing shows corallicolids are tightly associated with tropical and subtropical reef environments,5,8,9 where they infect diverse corals across a range of depths in many reef systems, and correlate with host mortality during bleaching events.10 All of this points to corallicolids being ecologically significant to coral reefs, but it is also possible they are even more widely distributed because most environmental sampling is biased against parasites that maintain a tight association with their hosts throughout their life cycle. We tested the global distribution of corallicolids using a more direct approach, by specifically targeting potential anthozoan host animals from cold/temperate marine waters outside the coral reef context. We found that corallicolids are in fact common in such hosts, in some cases at high frequency, and that they infect the same tissue as parasites from topical coral reefs. Parasite phylogeny suggests corallicolids move between hosts and habitats relatively frequently, but that biogeography is more conserved. Overall, these results greatly expand the range of corallicolids beyond coral reefs, suggesting they are globally distributed parasites of marine anthozoans, which also illustrates significant blind spots that result from strategies commonly used to sample microbial biodiversity.


Subject(s)
Anthozoa , Coral Reefs , Anthozoa/parasitology , Animals , Apicomplexa/physiology , Apicomplexa/genetics , Apicomplexa/classification , Symbiosis , Cold Temperature , Dinoflagellida/physiology , Dinoflagellida/genetics , Host-Parasite Interactions
3.
Mol Phylogenet Evol ; 195: 108060, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38485105

ABSTRACT

Apicomplexans are a diverse phylum of unicellular eukaryotes that share obligate relationships with terrestrial and aquatic animal hosts. Many well-studied apicomplexans are responsible for several deadly zoonotic and human diseases, most notably malaria caused by Plasmodium. Interest in the evolutionary origin of apicomplexans has also spurred recent work on other more deeply-branching lineages, especially gregarines and sister groups like squirmids and chrompodellids. But a full picture of apicomplexan evolution is still lacking several lineages, and one major, diverse lineage that is notably absent is the adeleorinids. Adeleorina apicomplexans comprises hundreds of described species that infect invertebrate and vertebrate hosts across the globe. Although historically considered coccidians, phylogenetic trees based on limited data have shown conflicting branch positions for this subgroup, leaving this question unresolved. Phylogenomic trees and large-scale analyses comparing cellular functions and metabolism between major subgroups of apicomplexans have not incorporated Adeleorina because only a handful of molecular markers and a couple organellar genomes are available, ultimately excluding this group from contributing to our understanding of apicomplexan evolution and biology. To address this gap, we have generated complete genomes from mitochondria and plastids, as well as multiple deep-coverage single-cell transcriptomes of nuclear genes from two Adeleorina species, Klossia helicina and Legerella nova, and inferred a 206-protein phylogenomic tree of Apicomplexa. We observed distinct structures reported in species descriptions as remnant host structures surrounding adeleorinid oocysts. Klossia helicina and L. nova branched, as expected, with monoxenous adeleorinids within the Adeleorina and their mitochondrial and plastid genomes exhibited similarity to published organellar adeleorinid genomes. We show with a phylogeneomic tree and subsequent phylogenomic analyses that Adeleorina are not closely related to any of the currently sampled apicomplexan subgroups, and instead fall as a sister to a large clade encompassing Coccidia, Protococcidia, Hematozoa, and Nephromycida, collectively. This resolves Adeleorina as a key independently-branching group, separate from coccidians, on the tree of Apicomplexa, which now has all known major lineages sampled.


Subject(s)
Apicomplexa , Genome, Plastid , Animals , Humans , Phylogeny , Plastids/genetics , Genome , Apicomplexa/genetics
4.
Ticks Tick Borne Dis ; 15(3): 102328, 2024 May.
Article in English | MEDLINE | ID: mdl-38432073

ABSTRACT

Tick-borne Apicomplexan parasites pose a significant threat to both public health and animal husbandry. Identifying potential pathogenic parasites and gathering their epidemiological data are essential for prospectively preventing and controlling infections. In the present study, genomic DNA of ticks collected from two goat flocks (Goatflock1 and Goatflock2) and one dog group (Doggroup) were extracted and the 18S rRNA gene of Babesia/Theileria/Colpodella spp. was amplified by PCR and sequenced. Phylogenetic analysis was conducted based on the obtained sequences. The differences in pathogen positive rates between ticks of different groups were statistically analyzed using the Chi-square or continuity-adjusted Chi-square test. As a result, two pathogenic Theileria (T.) luwenshuni genotypes, one novel pathogenic Colpodella sp. HLJ genotype, and two potential novel Colpodella spp. (referred to as Colpodella sp. struthionis and Colpodella sp. yiyuansis in this study) were identified in the Haemaphysalis (H.) longicornis ticks. Ticks of Goatflock2 had a significantly higher positive rate of Colpodella spp. than those from Goatflock1 (χ2=92.10; P = 8.2 × 10-22) and Doggroup (χ2=42.34; P = 7.7 × 10-11), and a significantly higher positive rate of T. luwenshuni than Doggroup (χ2=5.38; P = 0.02). However, the positive rates of T. luwenshuni between Goatflock1 and Goatflock2 were not significantly different (χ2=2.02; P = 0.16), and so as the positive rates of both pathogens between Goatflock1 and Doggroup groups (P > 0.05). For either Colpodella spp. or T. luwenshuni, no significant difference was found in prevalence between male and female ticks. These findings underscore the potential importance of Colpodella spp. in domestic animal-attached ticks, as our study revealed two novel Colpodella spp. and identified Colpodella spp. in H. longicornis for the first time. The study also sheds light on goats' potential roles in the transmission of Colpodella spp. to ticks and provides crucial epidemiological data of pathogenic Theileria and Colpodella. These data may help physicians, veterinarians, and public health officers prepare suitable detection and treatment methods and develop prevention and control strategies.


Subject(s)
Apicomplexa , Ixodidae , Theileria , Ticks , Female , Male , Animals , Dogs , Ticks/parasitology , 60614 , Goats/parasitology , Prevalence , Phylogeny , Ixodidae/parasitology , Theileria/genetics , China/epidemiology
5.
Parasitology ; 151(4): 400-411, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38465385

ABSTRACT

Individual organisms can host multiple species of parasites (or symbionts), and one species of parasite can infect different host species, creating complex interactions among multiple hosts and parasites. When multiple parasite species coexist in a host, they may compete or use strategies, such as spatial niche partitioning, to reduce competition. Here, we present a host­symbiont system with two species of Selenidium (Apicomplexa, Gregarinida) and one species of astome ciliate co-infecting two different species of slime feather duster worms (Annelida, Sabellidae, Myxicola) living in neighbouring habitats. We examined the morphology of the endosymbionts with light and scanning electron microscopy (SEM) and inferred their phylogenetic interrelationships using small subunit (SSU) rDNA sequences. In the host 'Myxicola sp. Quadra', we found two distinct species of Selenidium; S. cf. mesnili exclusively inhabited the foregut, and S. elongatum n. sp. inhabited the mid to hindgut, reflecting spatial niche partitioning. Selenidium elongatum n. sp. was also present in the host M. aesthetica, which harboured the astome ciliate Pennarella elegantia n. gen. et sp. Selenidium cf. mesnili and P. elegantia n. gen. et sp. were absent in the other host species, indicating host specificity. This system offers an intriguing opportunity to explore diverse aspects of host­endosymbiont interactions and competition among endosymbionts.


Subject(s)
Apicomplexa , Host Specificity , Phylogeny , Symbiosis , Animals , Apicomplexa/physiology , Apicomplexa/genetics , Apicomplexa/classification , Apicomplexa/ultrastructure , Coinfection/parasitology , Coinfection/veterinary , Ciliophora/physiology , Ciliophora/classification , Ciliophora/genetics , Annelida , Host-Parasite Interactions , Microscopy, Electron, Scanning , Bird Diseases/parasitology
6.
Sci Rep ; 14(1): 3526, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347146

ABSTRACT

The crocodile monitor (Varanus salvator) is the most common monitor lizard in Thailand. Based on habitat and food, they have the potential to transmit zoonoses, with a high possibility of infecting ectoparasites and endoparasites. Diseases that could infect crocodile monitors and be transmitted to other animals, including humans. This research aims to identify and evaluate the phylogenetic relationships of Hepatozoon sp. and sheathed microfilaria in crocodile monitors. The phylogenetic analyses of Hepatozoon, based on 18S rRNA, and sheathed microfilaria, based on the COX1 gene, revealed that the Hepatozoon sp. were grouped with H. caimani, while sheathed microfilaria were grouped together with B. timori. This study provides insights into the genetic diversity and host-parasite interactions of hemoparasites in crocodile monitors in Thailand.


Subject(s)
Alligators and Crocodiles , Apicomplexa , Eucoccidiida , Lizards , Animals , Humans , Brugia , Phylogeny , Thailand , Apicomplexa/genetics , Eucoccidiida/genetics , Lizards/parasitology , Genetic Variation
7.
Mol Microbiol ; 121(4): 717-726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38225194

ABSTRACT

Apicomplexan parasites are aetiological agents of numerous diseases in humans and livestock. Functional genomics studies in these parasites enable the identification of biological mechanisms and protein functions that can be targeted for therapeutic intervention. Recent improvements in forward genetics and whole-genome screens utilising CRISPR/Cas technology have revolutionised the functional analysis of genes during Apicomplexan infection of host cells. Here, we highlight key discoveries from CRISPR/Cas9 screens in Apicomplexa or their infected host cells and discuss remaining challenges to maximise this technology that may help answer fundamental questions about parasite-host interactions.


Subject(s)
Apicomplexa , Parasites , Humans , Animals , CRISPR-Cas Systems , Genome , Apicomplexa/genetics , Parasites/genetics , Host-Parasite Interactions
8.
Proc Biol Sci ; 291(2015): 20232305, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38228180

ABSTRACT

Environmental temperature fundamentally shapes insect physiology, fitness and interactions with parasites. Differential climate warming effects on host versus parasite biology could exacerbate or inhibit parasite transmission, with far-reaching implications for pollination services, biocontrol and human health. Here, we experimentally test how controlled temperatures influence multiple components of host and parasite fitness in monarch butterflies (Danaus plexippus) and their protozoan parasites Ophryocystis elektroscirrha. Using five constant-temperature treatments spanning 18-34°C, we measured monarch development, survival, size, immune function and parasite infection status and intensity. Monarch size and survival declined sharply at the hottest temperature (34°C), as did infection probability, suggesting that extreme heat decreases both host and parasite performance. The lack of infection at 34°C was not due to greater host immunity or faster host development but could instead reflect the thermal limits of parasite invasion and within-host replication. In the context of ongoing climate change, temperature increases above current thermal maxima could reduce the fitness of both monarchs and their parasites, with lower infection rates potentially balancing negative impacts of extreme heat on future monarch abundance and distribution.


Subject(s)
Apicomplexa , Butterflies , Extreme Heat , Parasites , Animals , Humans , Butterflies/physiology , Host-Parasite Interactions , Apicomplexa/physiology
9.
Mol Ecol ; 33(5): e17276, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38243603

ABSTRACT

Host abundance might favour the maintenance of a high phylogenetic diversity of some parasites via rapid transmission rates. Blood parasites of insular lizards represent a good model to test this hypothesis because these parasites can be particularly prevalent in islands and host lizards highly abundant. We applied deep amplicon sequencing and analysed environmental predictors of blood parasite prevalence and phylogenetic diversity in the endemic lizard Gallotia galloti across 24 localities on Tenerife, an island in the Canary archipelago that has experienced increasing warming and drought in recent years. Parasite prevalence assessed by microscopy was over 94%, and a higher proportion of infected lizards was found in warmer and drier locations. A total of 33 different 18s rRNA parasite haplotypes were identified, and the phylogenetic analyses indicated that they belong to two genera of Adeleorina (Apicomplexa: Coccidia), with Karyolysus as the dominant genus. The most important predictor of between-locality variation in parasite phylogenetic diversity was the abundance of lizard hosts. We conclude that a combination of climatic and host demographic factors associated with an insular syndrome may be favouring a rapid transmission of blood parasites among lizards on Tenerife, which may favour the maintenance of a high phylogenetic diversity of parasites.


Subject(s)
Apicomplexa , Lizards , Parasites , Animals , Phylogeny , Lizards/genetics , Prevalence , Apicomplexa/genetics
10.
Sci Rep ; 13(1): 21050, 2023 11 29.
Article in English | MEDLINE | ID: mdl-38030717

ABSTRACT

Microturbellarians are abundant and ubiquitous members of marine meiofaunal communities around the world. Because of their small body size, these microscopic animals are rarely considered as hosts for parasitic organisms. Indeed, many protists, both free-living and parasitic ones, equal or surpass meiofaunal animals in size. Despite several anecdotal records of "gregarines", "sporozoans", and "apicomplexans" parasitizing microturbellarians in the literature-some of them dating back to the nineteenth century-these single-celled parasites have never been identified and characterized. More recently, the sequencing of eukaryotic microbiomes in microscopic invertebrates have revealed a hidden diversity of protist parasites infecting microturbellarians and other meiofaunal animals. Here we show that apicomplexans isolated from twelve taxonomically diverse rhabdocoel taxa and one species of proseriate collected in four geographically distinct areas around the Pacific Ocean (Okinawa, Hokkaido, and British Columbia) and the Caribbean Sea (Curaçao) all belong to the apicomplexan genus Rhytidocystis. Based on comprehensive molecular phylogenies of Rhabdocoela and Proseriata inferred from both 18S and 28S rDNA sequences, as well as a molecular phylogeny of Marosporida inferred from 18S rDNA sequences, we determine the phylogenetic positions of the microturbellarian hosts and their parasites. Multiple lines of evidence, including morphological and molecular data, show that at least nine new species of Rhytidocystis infect the microturbellarian hosts collected in this study, more than doubling the number of previously recognized species of Rhytidocystis, all of which infect polychaete hosts. A cophylogenetic analysis examining patterns of phylosymbiosis between hosts and parasites suggests a complex picture of overall incongruence between host and parasite phylogenies, and varying degrees of geographic signals and taxon specificity.


Subject(s)
Apicomplexa , Parasites , Platyhelminths , Animals , Platyhelminths/genetics , Phylogeny , Parasites/genetics , DNA, Ribosomal/genetics , Apicomplexa/genetics
11.
Parasitology ; 150(11): 1063-1069, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37791496

ABSTRACT

Piroplasms, which include the agents of cattle fever and human and dog babesiosis, are a diverse group of blood parasites of significant veterinary and medical importance. The invasive Asian longhorned tick, Haemaphysalis longicornis, is a known vector of piroplasms in its native range in East Asia and invasive range in Australasia. In the USA, H. longicornis has been associated with Theileria orientalis Ikeda outbreaks that caused cattle mortality. To survey invasive populations of H. longicornis for a broad range of piroplasms, 667 questing H. longicornis collected in 2021 from 3 sites in New Jersey, USA, were tested with generalist piroplasm primers targeting the 18S small subunit rRNA (395­515 bp, depending on species) and the cytochrome b oxidase loci (1009 bp). Sequences matching Theileria cervi type F (1 adult, 5 nymphs), an unidentified Theileria species (in 1 nymph), an undescribed Babesia sensu stricto ('true' Babesia, 2 adults, 2 nymphs), a Babesia sp. Coco (also a 'true Babesia', 1 adult, 1 nymph), as well as Babesia microti S837 (1 adult, 4 nymphs) were recovered. Babesia microti S837 is closely related to the human pathogen B. microti US-type. Additionally, a 132 bp sequence matching the cytochrome b locus of deer, Odocoileus virginanus, was obtained from 2 partially engorged H. longicornis. The diverse assemblage of piroplasms now associated with H. longicornis in the USA spans 3 clades in the piroplasm phylogeny and raises concerns of transmission amplification of veterinary pathogens as well as spillover of pathogens from wildlife to humans.


Subject(s)
Apicomplexa , Babesia , Deer , Ixodidae , Parasites , Piroplasmida , Theileria , Ticks , Animals , United States/epidemiology , Humans , Dogs , Cattle , Piroplasmida/genetics , Ixodidae/genetics , Ticks/parasitology , Parasites/genetics , Cytochromes b , Apicomplexa/genetics , Babesia/genetics , Theileria/genetics , RNA, Ribosomal, 18S/genetics , Nymph/parasitology
12.
J Invertebr Pathol ; 201: 107997, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37774965

ABSTRACT

Urosporid eugregarines (Apicomplexa: Urosporidae) are unicellular eukaryotic parasites inhabiting the coelom or the intestine of marine invertebrates such as annelids, molluscs, nemerteans, and echinoderms. Despite the availability of published morphological and phylogenetical analyses of coelomic gregarines, their long-term survival in the host body cavity and dispersal routes into the marine environment remain unclear. Here, we focus on Urospora gametocysts and oocysts with sporozoites, which were found viable inside the so-called brown bodies floating in the body cavity of the polychaete Travisia forbesii. Brown bodies form as a result of host defence where coelomocytes encapsulate dead host cells and foreign objects including potential pathogens. We hypothesise the long-term persistence of Urospora eugregarines in brown bodies through evasion of the host immunity and outline possible pathways for their egress into the marine environment, applicable as dispersal routes for other parasites as well. Unique features revealed by detailed ultrastructural analysis of detected eugregarine stages include asynchronous sporogony, a massive sporozoite secretion apparatus, as well as the presence of free (possibly autoinfective) sporozoites within the gametocyst. The assignment to the genus Urospora and the complete identity with U. ovalis and U. travisiae were confirmed by analysing 18S rDNA sequences obtained from isolated gametocysts. The 18S rDNA phylogeny confirmed the affiliation of Urosporidae to Lecudinoidea and the grouping of all Urospora sequences with Difficilina from nemerteans and environmental sequences from the Artic region. We also enriched the Apicomplexa set by partial 28S rDNA sequences of two Urospora species enabling more complex phylogenetic analyses prospectively.


Subject(s)
Apicomplexa , Polychaeta , Animals , Phylogeny , Oocysts/ultrastructure , Polychaeta/parasitology , DNA, Ribosomal/genetics
13.
Eur J Protistol ; 90: 126008, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37536234

ABSTRACT

Gregarine apicomplexans, a group of single celled organisms, inhabit the extracellular spaces of most invertebrate species. The nature of the gregarine-host interactions is not yet fully resolved, mutualistic, commensal and parasitic life forms have been recorded. In the extreme arid environment of the Atacama Desert, only a few groups of invertebrates hosting gregarines such as darkling beetles (Tenebrionidae) were able to adapt, providing an unparalleled opportunity to study co-evolutionary diversification. Here, we describe one novel gregarine genus comprising one species, Atacamagregarina paposa gen. et sp. nov., and a new species, Xiphocephalus ovatus sp. nov. (Apicomplexa: Eugregarinoridea, Stylocephalidae), found in the tenebrionid beetle genera Scotobius (Tenebrioninae, Scotobiini) and Psectrascelis intricaticollis ovata (Pimeliinae, Nycteliini), respectively. In the phylogenetic analysis based on SSU rDNA, Atacamgregarina paposa representing the new genus is basal, forming a separate clade with terrestrial gregarines specific for North American darkling beetles.


Subject(s)
Apicomplexa , Coleoptera , Animals , Coleoptera/genetics , Coleoptera/parasitology , Phylogeny , Biological Evolution , Apicomplexa/genetics , DNA, Ribosomal/genetics
14.
Eur J Protistol ; 90: 126007, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37536235

ABSTRACT

Lankesterella parasites are blood coccidians that have recently gained attention as their records in common passerine species emerge. To date, their occurrence has been molecularly confirmed in several passerine genera, mainly among members of the families Paridae and Acrocephalidae. Despite their relatively high prevalence in some host populations, their life cycles remain unclear, mosquitoes or mites being the proposed vectors. The aim of this study was to reveal Lankesterella host specificity, focusing mainly on parasites of tit and warbler species (families Paridae and Acrocephalidae). We have determined the 18S rRNA gene sequences of Lankesterella from 35 individuals belonging to eight different host species. Phylogenetic analysis revealed that passerine Lankesterella are host-specific, with specificity at the host genus or species level. Besides Lankesterella, Isospora sequences were obtained from avian blood as well, pointing out the need for barcoding.


Subject(s)
Apicomplexa , Coccidia , Eucoccidiida , Passeriformes , Humans , Animals , Coccidia/genetics , Phylogeny , Host Specificity , Passeriformes/parasitology
15.
Malar J ; 22(1): 232, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37563610

ABSTRACT

BACKGROUND: The nuclear ribosomal RNA genes of Plasmodium parasites are assumed to evolve according to a birth-and-death model with new variants originating by duplication and others becoming deleted. For some Plasmodium species, it has been shown that distinct variants of the 18S rRNA genes are expressed differentially in vertebrate hosts and mosquito vectors. The central aim was to evaluate whether avian haemosporidian parasites of the genus Haemoproteus also have substantially distinct 18S variants, focusing on lineages belonging to the Haemoproteus majoris and Haemoproteus belopolskyi species groups. METHODS: The almost complete 18S rRNA genes of 19 Haemoproteus lineages of the subgenus Parahaemoproteus, which are common in passeriform birds from the Palaearctic, were sequenced. The PCR products of 20 blood and tissue samples containing 19 parasite lineages were subjected to molecular cloning, and ten clones in mean were sequenced each. The sequence features were analysed and phylogenetic trees were calculated, including sequence data published previously from eight additional Parahaemoproteus lineages. The geographic and host distribution of all 27 lineages was visualised as CytB haplotype networks and pie charts. Based on the 18S sequence data, species-specific oligonucleotide probes were designed to target the parasites in host tissue by in situ hybridization assays. RESULTS: Most Haemoproteus lineages had two or more variants of the 18S gene like many Plasmodium species, but the maximum distances between variants were generally lower. Moreover, unlike in most mammalian and avian Plasmodium species, the 18S sequences of all but one parasite lineage clustered into reciprocally monophyletic clades. Considerably distinct 18S clusters were only found in Haemoproteus tartakovskyi hSISKIN1 and Haemoproteus sp. hROFI1. The presence of chimeric 18S variants in some Haemoproteus lineages indicates that their ribosomal units rather evolve in a semi-concerted fashion than according to a strict model of birth-and-death evolution. CONCLUSIONS: Parasites of the subgenus Parahaemoproteus contain distinct 18S variants, but the intraspecific variability is lower than in most mammalian and avian Plasmodium species. The new 18S data provides a basis for more thorough investigations on the development of Haemoproteus parasites in host tissue using in situ hybridization techniques targeting specific parasite lineages.


Subject(s)
Apicomplexa , Bird Diseases , Haemosporida , Parasites , Plasmodium , Protozoan Infections, Animal , Songbirds , Animals , Phylogeny , RNA, Ribosomal, 18S/genetics , Genes, rRNA , Bird Diseases/parasitology , Apicomplexa/genetics , Plasmodium/genetics , Mammals/genetics , Protozoan Infections, Animal/parasitology
16.
J Invertebr Pathol ; 200: 107970, 2023 09.
Article in English | MEDLINE | ID: mdl-37422088

ABSTRACT

Biological invasions may act as conduits for pathogen introduction. To determine which invasive non-native species pose the biggest threat, we must first determine the symbionts (pathogens, parasites, commensals, mutualists) they carry, via pathological surveys that can be conducted in multiple ways (i.e., molecular, pathological, and histological). Whole animal histopathology allows for the observation of pathogenic agents (virus to Metazoa), based on their pathological effect upon host tissue. Where the technique cannot accurately predict pathogen taxonomy, it does highlight pathogen groups of importance. This study provides a histopathological survey of Pontogammarus robustoides (invasive amphipod in Europe) as a baseline for symbiont groups that may translocate to other areas/hosts in future invasions. Pontogammarus robustoides (n = 1,141) collected throughout Poland (seven sites), were noted to include a total of 13 symbiotic groups: a putative gut epithelia virus (overall prevalence = 0.6%), a putative hepatopancreatic cytoplasmic virus (1.4%), a hepatopancreatic bacilliform virus (15.7%), systemic bacteria (0.7%), fouling ciliates (62.0%), gut gregarines (39.5%), hepatopancreatic gregarines (0.4%), haplosporidians (0.4%), muscle infecting microsporidians (6.4%), digeneans (3.5%), external rotifers (3.0%), an endoparasitic arthropod (putatively: Isopoda) (0.1%), and Gregarines with putative microsporidian infections (1.4%). Parasite assemblages partially differed across collection sites. Co-infection patterns revealed strong positive and negative associations between five parasites. Microsporidians were common across sites and could easily spread to other areas following the invasion of P. robustoides. By providing this initial histopathological survey, we hope to provide a concise list of symbiont groups for risk-assessment in the case of a novel invasion by this highly invasive amphipod.


Subject(s)
Amphipoda , Apicomplexa , Microsporidia , Parasites , Animals , Amphipoda/microbiology , Host-Parasite Interactions , United Kingdom , Introduced Species , Apicomplexa/physiology
17.
Chembiochem ; 24(17): e202300263, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37171468

ABSTRACT

Natural product discovery has traditionally relied on the isolation of small molecules from producing species, but genome-sequencing technology and advances in molecular biology techniques have expanded efforts to a wider array of organisms. Protists represent an underexplored kingdom for specialized metabolite searches despite bioinformatic analysis that suggests they harbor distinct biologically active small molecules. Specifically, pathogenic apicomplexan parasites, responsible for billions of global infections, have been found to possess multiple biosynthetic gene clusters, which hints at their capacity to produce polyketide metabolites. Biochemical studies have revealed unique features of apicomplexan polyketide synthases, but to date, the identity and function of the polyketides synthesized by these megaenzymes remains unknown. Herein, we discuss the potential for specialized metabolite production in protists and the possible evolution of polyketide biosynthetic gene clusters in apicomplexan parasites. We then focus on a polyketide synthase from the apicomplexan Toxoplasma gondii to discuss the unique domain architecture and properties of these proteins when compared to previously characterized systems, and further speculate on the possible functions for polyketides in these pathogenic parasites.


Subject(s)
Apicomplexa , Polyketides , Secondary Metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Computational Biology , Apicomplexa/genetics , Apicomplexa/metabolism , Polyketides/chemistry
18.
Parasitol Res ; 122(7): 1573-1579, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37140652

ABSTRACT

An ant-pathogenic neogregarine in Temnothorax affinis and T. parvulus (Hymenoptera: Formicidae) is described based on morphological and ultrastructural characteristics. The pathogen infects the hypodermis of the ants. The infection was mainly synchronous so that only gametocysts and oocysts could be observed simultaneously in the host body. Gametogamy resulted in the formation of two oocysts within a gametocyst. The lemon-shaped oocysts measured 11-13 µm in length and 8-10 µm in width. The surface of the oocysts is not smooth but contains many buds. A ring-shaped line containing rosary-arrayed buds line up in the equatorial plane of the oocyst. These specific characteristics were observed for the first time in neogregarine oocysts from ants. Polar plugs were recognizable clearly by light and electron microscopy. The oocyst wall was quite thick, measuring 775 to 1000 nm. Each oocyst contained eight sporozoites. The neogregarines in the two Temnothorax species show many similarities such as the size and shape of the oocysts, a relatively fragile gametocyst membrane, host affinity, and tissue preference. We identified these neogregarines as Mattesia cf. geminata, which is here recorded from natural ant populations in the Old World for the first time. All neogregarine pathogens infecting ants in nature so far have been recorded from the New World. We present the two ant species, Temnothorax affinis and T. parvulus, as new natural hosts for M. cf. geminata. Furthermore, the morphological and ultrastructural characteristics of the oocyst of M. cf. geminata are documented by scanning and transmission electron microscopy for the first time.


Subject(s)
Ants , Apicomplexa , Animals , Apicomplexa/ultrastructure , Oocysts/ultrastructure , Microscopy, Electron, Transmission , Microscopy, Electron
20.
BMC Genomics ; 24(1): 278, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37226080

ABSTRACT

Apicomplexa are ancient and diverse organisms which have been poorly characterized by modern genomics. To better understand the evolution and diversity of these single-celled eukaryotes, we sequenced the genome of Ophryocystis elektroscirrha, a parasite of monarch butterflies, Danaus plexippus. We contextualize our newly generated resources within apicomplexan genomics before answering longstanding questions specific to this host-parasite system. To start, the genome is miniscule, totaling only 9 million bases and containing fewer than 3,000 genes, half the gene content of two other sequenced invertebrate-infecting apicomplexans, Porospora gigantea and Gregarina niphandrodes. We found that O. elektroscirrha shares different orthologs with each sequenced relative, suggesting the true set of universally conserved apicomplexan genes is very small indeed. Next, we show that sequencing data from other potential host butterflies can be used to diagnose infection status as well as to study diversity of parasite sequences. We recovered a similarly sized parasite genome from another butterfly, Danaus chrysippus, that was highly diverged from the O. elektroscirrha reference, possibly representing a distinct species. Using these two new genomes, we investigated potential evolutionary response by parasites to toxic phytochemicals their hosts ingest and sequester. Monarch butterflies are well-known to tolerate toxic cardenolides thanks to changes in the sequence of their Type II ATPase sodium pumps. We show that Ophryocystis completely lacks Type II or Type 4 sodium pumps, and related proteins PMCA calcium pumps show extreme sequence divergence compared to other Apicomplexa, demonstrating new avenues of research opened by genome sequencing of non-model Apicomplexa.


Subject(s)
Apicomplexa , Butterflies , Parasites , Animals , Butterflies/genetics , Sodium-Potassium-Exchanging ATPase , Apicomplexa/genetics , Sodium
SELECTION OF CITATIONS
SEARCH DETAIL
...